MPC for discrete-event systems with soft and hard synchronisation constraints

نویسنده

  • B. De Schutter
چکیده

Discrete-event systems with only synchronisation and no concurrency, also known as timed event graphs or (max,+)-linear systems, have been studied by several authors. The synchronisation constraints that arise in these discrete-event systems are hard, i.e., they cannot be broken under any circumstance. In this paper we consider a more extended class of discrete-event systems with both hard and soft synchronisation constraints, i.e., if necessary, some synchronisation conditions may be broken, but then a penalty is incurred. We show how the model predictive control (MPC) framework, which is a very popular controller design method in the process industry, can be extended to this class of discrete-event systems. In general, the MPC control design problem for discrete-event systems with soft and hard synchronisation constraints leads to a nonlinear non-convex optimisation problem. We show that the optimal MPC strategy can also be computed using an extended linear complementarity problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model predictive control for discrete-event systems with soft and hard synchronization constraints

Max-plus-linear models can be used to model discrete-event systems with only synchronization and no concurrency. The synchronization constraints in max-plus-linear discrete-event systems are hard, i.e., they cannot be broken under any circumstance. We consider a class of discrete-event systems with both hard and soft synchronization constraints, i.e., if necessary, some synchronization conditio...

متن کامل

Model predictive control for railway networks

Model predictive control (MPC) is a very popular controller design method in the process industry. Usually MPC uses linear discrete-time models. In this paper we extend MPC to a class of discrete-event systems with both hard and soft synchronization constraints. Typical examples of such systems are railway networks, subway networks, and other logistic operations. In general the MPC control desi...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

Recent Developments in Discrete Event Systems

This article is a brief exposure of the process approach to a newly emerging area called "discrete event systems" in control theory and summarizes some of the recent developments in this area. Discrete event systems is an area of research that is developing within the interstices of computer, control and communication sciences. The basic direction of research addresses issues in the analysis an...

متن کامل

Constrained Controller Design for Real-time Delay Recovery in Metro Systems

This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003